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Patterns of convection in spherical shells. Part 2 

By F. H. BUSSEt 
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Institute of Geophysics and Planetary Physics, UCLA 

(Received 10 February 1981 and in revised form 17 November 1981) 

The analysis by Busse (1975) of preferred patterns of convection in spherical shells 
is extended to include the case of odd degrees 1 of spherical harmonics. I n  the general 
part of the paper only the property of spherical symmetry of the basic state is used. 
The results are thus applicable to all bifurcation problems with spherical symmetry. 
Except in the case 1 = 1 a pattern degeneracy of the linear problem exists, which is 
partly removed by the solvability conditions that are generated when nonlinear terms 
are taken into account as perturbations. I n  each of the cases 1 considered so far, a t  
least 1 physically different solutions have been found. The preferred solution among 
I existing ones is determined for 12 2 by a stability analysis. I n  the case I = 3 
emphasized in this paper the axisymmetric solution is found to  be always unstable, 
and the solution of tetrahedronal symmetry appears to be generally preferred. The 
latter result is rigorously established in the special case of a thin layer with nearly 
insulating boundaries treated in the second part of the paper. 

1. Introduction 
The problem of convection in spherical shells with spherically symmetric physical 

conditions is of interest from several points of view. The early work on linear aspects 
of the problem, which is conveniently reviewed in Chandrasekhar’s (1961) monograph, 
has been motivated by the hypothesis of convection flow in the Earth’s mantle. The 
increasing evidence for solid-state convection in the earth and in other terrestial 
planets, a t  least throughout parts of their thermal history, has stimulated a number 
of nonlinear analyses of the problem of convection in spherical shells (Young 1974; 
Busse 1975; Zebib, Schubert & Straus 1980; Schubert & Zebib 1980). But there are 
other applications as well. The physical conditions of convection zones in stars are 
spherically symmetric if the rotation ;ate is sufficiently low. Moreover the results 
obtained in the theory of convection can be applied to other cases of instability of 
a spherically symmetric system such as the buckling of spherical shells. I n  fact any 
problem involving a symmetry-breaking bifurcation from a spherically symmetric 
state leads to the same problems of pattern selection as those that can be discussed 
in the case of convection. 

From the mathematical point of view, convection in spherically symmetric layers 
is of special interest because of the finite degeneracy of the bifurcation problem. Since 
the degree of pattern degeneracy is closely related to the degree 1 of spherical 
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harmonics that is preferred according to the linear theory of t'he problem, the degree 
of pattern degeneracy varies primarily with the radius rat'io of the boundaries of the 
shell, and a rich variet>y of bifurcation problems ran be studied in terms of the 
dependence on t>he latter parameter. The case 1 = 2 has received most of the attention 
so far (Chossat' 1979; Golubitsky & Schaeffer 1982), but' other cases may prove to 
bc of no lesser mathematical interest once the art xopriate group-theoretical methods 
arc available (Sattinger 1980). 

The main mathematical problem of convection in spherical shells is the det'ermi- 
nat'ion of independent) solutions of the basic equations. Because most of the solutions 
given in the form of the usual superposition of spherical harmonics are bransformations 
of each other, i t  is a non-trivial task to enumerate those solutions that cannot be 
t,ransformcd into each other by rotation on the sphere. In  this paper setls of 
independent solutions will be derived, but a rigorous proof for the cornpletcness of 
the scts is not available in most cases. Of primary physical interest, are the stable 
solutions of the problem. For this reason a stability analysis is carried out in this paper 
in addit>ion to the determination of the steady solutions of the problem. 

In order to keep the discussion of the problem as general as possible, no special 
assumpt,ions about physical properties will be made (except for the consideration of 
a special case a t  the end of the paper). The main restriction of the analysis is that 
the Rayleigh number must be close to its critical value such that the amplitude of 
convect>ion is small and an expansion in powers of t'he amplitude is feasible. In  this 
respect the paper is an extension of an earlier work of Busse (1975, hereinafter 
rcferred t'o as B75). By carrying the perturbation analysis of that  paper to the third 
order in the amplitude of convection it becomes possible to derive some general 
properties of cases with odd degrees 1 of the spherical harmonics. I n  B75 preferred 
solutions have been derived only in the case of even I. In  particular, it' was shown 
that' convection modes exhibiting the symmetries of four of the five Platonic bodies 
are preferred in the cases of 1 = 4 and 1 = 6. I n  this paper it, will be demonstrated 
t>hat convect>ion with betrahedronal symmetry is preferred in the case 1 = 3. 

The paper start's wit'h a description of the basic equations and a formulation of 
t'he perturbation analysis in $2. To emphasize the general properties of the analysis, 
dependent variables are combined into a vector variable, and matrix operators are 
introduced. Steady solutions are discussed from the general point of view in $3, and 
evaluated for particular values of the degree 1 of spherical harmonics in $5. Similarly, 
a general stability analysis of the steady solutions is described in $4, while an 
evaluat'ion of the expressions for the growth rates of disturbances for particular values 
of 1 is postponed until 56. In  $7 the limit of a thin shell with nearly insu1at)ing 
boundaries is assumed. which permits the derivation of explicit analytical expressions. 
The paper closes with some concluding remarks in $8. 

2. Mathematical formulation of the problem 
We consider a spherical fluid layer of thickness h which is bounded by two 

concentric spherical surfaces with radii r,h and (r,, + 1 )  h. The fluid is subject to a 
spherically symmetric gravity force and contains a spherically symmetric distribution 
of heat sources. The properties of the core inside the fluid layer are also assumed to 
exhibit spherical symmetry. Because of its symmetry the problem permits a steady 
static solution of pure conduction with a temperature drop AT across the fluid layer. 

Using h ,  h 2 / K ,  and ATas scales for length, time and temperature respectively, where 
K is the thermal diffusivity, the basic equations in the Boussinesq approximation can 
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be written in the dimensionless form given in B75. Here we proceed by introducing 
the general representation for the solenoidal velocity vector u 

u = V x ( V x r @ ) + V x r @ .  (2.1) 
By scalar-multiplying the curl of the curl of the equation of motion by r the following 
scalar equation for @ is obtained: 

( V z - l t 1 ~ ) V 2 L , 0 - R y ^ ( r ) L , 0 / ( r o + ~ )  = P 1 r . V x { V x  ( u x  (Vxu))}.  ( 2 . 2 ~ )  

The heat equation for the deviation 0 of the temperature from the dimensionless 
static temperature distribution T(r)  is given by 

( 2 . 2 b )  

The operation L2 represents the negative two-dimensional Laplacian on the unit' 
sphere, i.e. in spherical co-ordinates ( r ,  8, #) 

The Rayleigh number R and the Prandtl number P are defined by 

V 

KV K 
, P = - ,  

ago ATh3 
R =  

where CL is the coefficient of thermal expansion, v is the kinematic viscosity and go 
is the gravitational acceleration a t  r = ro +&, such that the function y^(r) becomes unity 
a t  r = ro+&.  

There is no need to  consider an equation for @ as far as the analysis is carried out 
in this paper. 

Chandrasekhar (1961) has shown that the equation for @ admits only decaying 
solutions when the nonlinear terms are neglected. Thus @ can be a t  moat of order 

if E is a measure of the amplitude of convection. I n  appendix A it is shown that 
@ can be a t  most of order s3, since the right-hand side of the equation for @ vttniehss 
in order c2. This property is analogous to  the corresponding property in the case of 
a plane layer, (Schluter, Lortz & Busse 1965) and holds for the stability analysis 
as well. 

To simplify the notation, @ and O are combined into a two-dimensional vector 
XT = { ( r o + i ) @ ,  0}, and the matrix operators 

are introduced. Equations (2.2a, b )  for steady solutions @, 0, can thus be written in 
the form 

There is no need to specify boundary conditions at this point. It is sufficient to assume 
that the boundary conditions are linear and homogeneous in the variables Qr, 0: 

(W+RU) .X=Q(X,  X). (2.4) 

B , . X = O  a t  r = r o ,  B o . X = O  at r = r o + l .  (2.5) 
10-2 
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In  order to investigate the stability of the steady solution X of the boundary-value 
problem (2.4). (2.5), infinitesimal disturbances 8 will be superimposed. Without 
losing generality i t  can be assumed that the time dependence of the disturbances is 
of the form exp {at}, with a complex growth rate (T. The equations for the disturbances 
can thus be written in the form 

(W+RU).X=uV.X+Q(X, 8 ) + Q ( X , X ) .  (2.6) 

Solutions of the nonlinear problem (2.4), (2 .5)  can be obtained by expanding the 
dependent variable X and the Rayleigh number R in powers of the amplitude s of 
convection. Here and in the subsequent stability analysis we follow basically the 
approach of Schliiter et al. (1965) and Busse (1967) in the case of a plane layer. After 
introducing the power series 

X = +E'X(') + . . ., R = + c2R@) + . . . (2.7) 

into (2.4), a hierarchy of linear equations is obtained corresponding to different powers 
ofs.  Starting with terms of order e these equations are solved term by term. In  this 
paper only terms up to  order c3 will be considered. 

In  lowest order, (2.4) yields 
(W +R(O)U). X(1) = 0, (2.8) 

which has been studied in detail by Chandrasekhar (1961). The general solution can 
be written in the form 

where 

represents the general solution of 
L,Wl = Z(1+ 1 )  w1. (2.11) 

The functions @ ( o s  0 )  differ by a factor from the commonly used associated 
Legendre polynomials 

@(2) = 1(21+ 1 )  (2-6,,) (Z-m)!/(Z+m)! pPZ"(2). 
This definition ensures that 

(I@(co~8)cosmq51~) = (I@(co~O)sinmq51~) = 1 forall m,l, 

where the angle brackets indicate the average over the fluid shell 

(2.12) 

Using (2.11), (2.8) can be reduced to two coupled ordinary differential equations 
for f ( r )  and g ( r ) .  I n  the following i t  will be assumed that the functions f ( r )  and g ( r )  
satisfying the boundary conditions (2 .5)  have been determined. That value of 1 will 
be assumed which minimizes the eigenvalue R(O). Most of the arguments used in the 
following will not depend on this particular choice of 1. Since the eigenvalues R(O) for 
the different I are distinct in general, only a single value of 1 must be considered to  
order c of the problem. The singular case when the difference between two eigenvalues 
R(O) for different values of 1 tends to zero requires special discussion and will not be 
addressed in this paper. 
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The arbitrariness of the coefficients am, pm in expression (2.10) exhibits the 
(21+ 1)-fold degeneracy of the solution of the linear problem. Not all solutions of the 
form (2.10) correspond to solutions of the nonlinear problem in the limit c + 0. The 
main task of the analysis in $ 3  is the determination of the constraints on the 
coefficients. This task is complicated by the fact that together with any given solution 
of the form (2.10) all solutions obtained by rotations of the given solution belong to 
the manifold of solutions of the problem. To simplify the analysis we shall follow B75 
in introducing the assumption that all solutions of the nonlinear problem (2.4), (2.5) 
exhibit symmetry with respect to a plane through the centre of the sphere. By 
identifying this plane with the plane $ = 0 this assumption allows us to set 

p ,  = 0 (0 < m < I). (2.13) 

For reasons of mathematical convenience we also introduce the normalization 

(lwzlz) = Z a2, = 1 .  (2.14) 
m-o 

Before the higher orders in 6 of the problem (2.4), (2.5) can be studied tbe solution 
of the adjoint problem to the linear homogeneous problem (2.8), ( 2 . 5 )  must be 
discussed. The adjoint operators W+ and U+ are given by the transposed forms WT, 
UT of the operators W and U. A complete set of independent solutions that are 
symmetric with respect to $ = 0 can be written in the form 

condition 1 

wz = Z a, Y y  ( i  = 0 ) ,  
m=o 

a,+l Yj-ai Y$+l (0 < i < I), 
= 

(2.15a) 

(2.15 b )  

The special choice of the functions (2.15b) allows the condition 

( ? 4 p  .7J = Si, (2.16) 

Of particular interest is the self-adjoint case, which is characterized by the 
to be satisfied (where Si, is the Kronecker symbol). 

condition 
(2.17) 

for all commonly used boundary conditions of the form (2 .5) .  In  the self-adjoint case 

f'(4 K f ( T ) >  g+(r)  g ( r )  (2.18) 

holds, and separate computations of the adjoint linear problem are not required. 
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3. Perturbation analysis 
To order c2 (2.4) yields 

(W+R(O)U) .X(z) = Q(X(1),X('))-R(l)U .X(1). (3.1) 

A solution of the inhomogeneous equation (3.1) exists if the right-hand side of (3.1) 
is orthogonal to all solutions of the adjoint homogeneous problem. Since the right-hand 
side is a symmetric function in #, i t  suffices to multiply it by the set of solutions 
(2.15) and average the result over the fluid layer. The resulting equations can be 

( 3 . 2 ~ )  written in the form 

(3.2b) 

where the property (B1 ) (derived in appendix B) of spherical harmonics has been used. 
The function Mo(Z) is given by 

R(l) = M,(Z) ( W ,  w1 W J  , 

0 = ( w p  wzwz) (i = 1 ,  . . . , I ) ,  

where the operator D, is defined by 

(3.4) 

It is easily seen that Mo(I) = 0 in the self-adjoint case because of the property (2.18). 
Because of the symmetry property of spherical harmonics the relationship 

WZ(O,$b) = ( - l ) , w ,  (n-O,#+n) 

holds, with the consequence that the right-hand sides of (3.2a, b )  vanish whenever 
I is an odd integer. We thus arrive a t  the conclusions that Rfl) always vanishes for 
odd 1. and that it vanishes for all I in the case of a self-adjoint linear problem (2.4), 
(2.6). The first of these conclusions has been demonstrated in B75, and the second 
agrees with the validity of the energy principle in the self-adjoint case (Joseph & 
Carmi 1966). 

Since (3.2a, b )  have been discussed in detail in B75, we proceed by deriving the 
solution of (3.1). The structure of the latter equation permits us  to  write 

i.e. t,he solution is obtained by expanding the right-hand side of (3.1) in terms of 
spherical harmonics Yk((8, #), of which only those of even degree are needed because 
of the symmetry of the problem. Since the solution (3.5) is determined only up to  
an arbitrary cont,ribution of the solution of the homogeneous equation, a normaliz- 
ation condition is needed. For mathematical convenience we choose the condition 

<X:.U .Xcfl)) = 0 (a = 2 , 3  . .  .). 
To order c3 (2.4) yields 

(3.6) 

(W+R(O)U).X(3) = Q(X(l), X(2))+Q(X(2),X(1))--R(2)U .X(')-R(l)U . X('). (3.7) 
Multiplication of the right-hand side by the set of solutions (2.15) and averaging over 
the fluid layer yields 
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2 2k 

where M(1, k )  is given by 

The investigation of the nonlinear equations (3.8a, b )  is facilitated by the apparent 
validity of the relationship 

2k 2 

( I ’ & u r l W l )  ( I’gkWlWli’) = C(1, k )  2 (YgW,w,) ( Ytfw,wfi)) (3.10) 
p=o p-0 

for k >, 1 and for i = 1 ,  . . . , I, where C(1, k )  is a function of 1 and k only. For all values 
of Z that  have been investigated this relationship was found to  be valid. But so far 
it has not been possible to prove its general validity. When the relationship (3.10) 
is accepted as a hypothesis, (3.8b) can be rewritten in the form 

(i = 1, . . . , Z), 
2 

0 = c. (Ygw,W,) (  Ygw2urf’)) (3.11) 
p=0 

provided that the common factor in all the equations (3 .8b)  does not vanish: 

2 

k=l  
X C(Z,k)M(l ,  k )  =# 0. (3.12) 

Since this condition is generally satisfied, the system of 1 + 1 equations for the I+ 1 
unknowns a, given by (2.14) and (3.1 1 )  becomes independent of the r-dependence 
of the problem. This remarkable fact extends to  cases of odd 1 and to the self-adjoint 
case the property that’ the possible steady solutions of the form (2.10) are independent 
of the physical specification of the problem. It permits the determination of possible 
patterns of convection without knowledge of the functions f ( r ) ,  g(r) ,  Fk( r ) ,  Gk(r ) ,  
which often require cumbersome computations. Before investigating (3.11) for special 
values of 1 we considcr the general problem of stability. 

4. Stability analysis 
In  general, several solutions of the form (2 .10)  satisfy the solvability conditions 

(3.2) and (3.8). It thus becomes necessary to  distinguish the physically realizable 
solution among the manifold of existing solutions by its stability property. The 
stability problem described by (2.6) and the corresponding boundary conditions (2 .5 )  
must be solved for all possible disturbances a. The steady solution X is stable if the 
real parts of all eigenvalues (T are negative or zero; otherwise i t  is unstable. After the 
expressions (2.7) arc inserted in (2.6) it becomes obvious that the solution 8, (T of 
the linear homogeneous problem (2.6) can be obtained in the form 

8 = 8(’) + C W )  + e28(3 )  + . . . , (T = d o )  + e(T(1) + €2fT(2) + . . . . (4.1) 
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To order EO the equation 

(4.2) (W + R(O) U )  8 ( 1 )  = (r(O)V8(') 

is obtained. Since R(O) is assumed to  be the minimum value for which (2.8) can be 
satisfied, do) = 0 represents the growth rate with maximal real part. Accordingly fL(') 
can be written in the form 

where 
X(l) = g;) Gl(6, $1, (4.3) 

G,(o,$) = c (zm cos rn$+pTn sin m$)@(cos 0 )  = x (a", Y Y + , ! ? ~  FYI.  (4.4) 

The special choice (2.15) of the solutions of the adjoint homogeneous problem does 
not provide any advantage in the discussion of the solvability conditions of the 
stability equations. Thus the following complete set of solutions of the adjoint 
problem will be used. 

1 1 

m=o m-o 

(4.5) 

To order E' in (2.6) the equation 

(W+R(O)U) .z(2) = g(1)V.%(')-R(')U .fL(')+Q(x('),8('))+Q(fi;('),X(')) (4.6) 

is obtained. Multiplication of the right-hand side by the set of functions (4.5) and 
averaging over the fluid layer yields 

(R( ' ) -a ( l )M2(z ) ) z i  = 2M0(Z)( YEu,,G,) (4.7a) 

(R(')-d1)M2(z)),!?i = 2M0(z)(P~w2u12) ( i  = 1,2,  . . .,Z), (4.76) 

(i  = 0 ,  1, . . . , l ) ,  

where the positive expression M2(Z) is defined by 

M,(Z) = (gg+-P-lz(z+ l)f+Dlf) (1(2+ 1)r^(?-)f+g)-'. (4.8) 

As in the discussion of the conditions (3.2a, b )  i t  is readily seen that dl) vanishes 
in the case of odd integers Z and in the self-adjoint case. I n  the other case the 
eigenvalues d') are determined by the condition that the determinant of the 
coefficient matrix for the unknowns a"$, pt vanishes. A particular solution of (4.7) is 
given by 

M 2 g p  = -RW, = at, pi = 0 ( i  = 0,1, . . .,I), (4.9) 

which indicates that  the solution with eR(l) < 0 is unstable. 
In  cases of odd Z or when the problem is nearly self-adjoint the contribution d2) 

to the growth rate becomes important in deciding the stability of the sbeady 
solutions. Assuming that a(') and R(l) are vanishing (or a t  least small compared with 
the other terms on the right-hand side of (4.6)) we obtain as a sdution of (4.6) 
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can be written in the form 
1 2k 

k-0 j - 0  
(R(2)-U(2)M2(Z))L?.. = z M ( I , k )  z (2(WlGl Yik)  (Wi Yik  Y f )  
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+(wlw ,Y ik ) (GlY<k  YE)) ( i =  It25 . . .  ,I). (4.12b) 

The system (4.12a, b)  of 22 + 1 linear homogeneous equations is solvable if and only 
if the determinant of the matrix of the coefficients of the unknowns L?.* and bs vanishes. 
The eigenvalues d2) can thus be determined as the zeros of the determinant. Unlike 
the case of the solvability conditions (3.8) for the steady solution, i t  is not possible 
to evaluate the stability equations without detailed knowledge of the radial depen- 
dence of the problem. The main general conclusion to be drawn from ( 4 . 1 2 ~ .  b )  is that 
the two equations are not coupled and that the matrices of coefficients are symmetric. 
The eigenvalues d2) are thus real and can be determined by considering (4.12a, b )  
separately. 

A few eigenvalues d2) can be determined directly. By comparing (4.11) with (3.7) 
it can be seen that 

X(1) = X(1) or zg = ai (i = 0, . . . , I )  

is a solution of ( 4 . 1 2 ~ )  corresponding to 

M ,  ai2' = -2R(2). 

In  addition i t  is known that there are two independent possibilities of rotating the 
steady solution on the sphere. Therefore there must be at least two eigenvalues 

= 0. 

5.  Steady solutions 
I n  this section the remarkable property will be exploited that the coefficients ui 

are independent of the radial dependence of the problem according to the relationship 
(3.10). The attention will be focused on cases for which R(l) vanishes, since the 
problem has been treated for R(l) += 0 in B75. Although the relationship (3.10) permits 
a general solution for the coefficients a$, it does not simplify the mathematical 
structure of the equations (3.8). Because of the highly nonlinear form of (3.11) only 
cases of low values of I can be solved explicitly. It is readily seen that the 
axisymmetric solution a; = 1 ,  ai = 0 (i = 1 ,  . . . , I )  represents a solution of the system 
(3.8) for all values of I because (3.8b) vanish identically. But there does not seem t o  
exist any other solution that can be defined independently of 1. Each 1 must thus be 
discussed separately. 

5.1. The case 1 = 1 

Equations (2.14) and (3.8) yield for 1 = 1 

R(2) = M(i,O)+$M(l,  l ) ,  ( 5 . 1 ~ )  

(5.1 b )  

The possible choices of coefficients admitted by (5.1 b )  correspond t o  all possible 
inclinations of the axisymmetric solution a; = 1 with respect to the axis of the 

a; = 1 - a 2  0'  
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co-ordinate system within the plane q5 = 0. The solvability conditions (3.8) do not 
constrain the manifold of solutions (2.10) because each one of the latter represents 
a transformation of the axisymmetric solution in the case 1 = 1 .  Thus the stability 
problem becomes trivial in this case because of the absence of competing states of 
convection. 

5.2. The case 1 = 2 

IJnlike the case 1 = 1 a true pattern degeneracy exists for 1 = 2 .  The term pattern 
degeneracy applies to  physically distinguishable solutions, in contrast to the orien- 
tational degeneracy, which originates from the rotations of a given solution on the 
surface of the sphere. I n  the non-self-adjoint case the axisymmetric mode alone 
satisfies the solvability conditions (3.1 1 )  according to  B75. But in the self-adjoint case 
the pattern degeneracy cannot be removed since (3.11) vanish identically for 1 = 2.  
Since the self-adjoint case represents a relatively special problem and since a detailed 
discussion is given by Golubitsky & Schaeffer (1982) we shall not consider this case 
further. The expression for R(,) is given by 

R(') = M(2,O)  +gM(2,1) + g M ( 2 , 2 ) ,  (5 .2)  

independently of the values of the coefficients mi. 

5.3.  The case 1 = 3 
Equations (3.11) assume the following form for 1 = 3: 

$a1 a,( - 8ai + 2a: + 5ai - 10a;) + 2a, a,(ai - 01:) 
+ 15-1{401,aZ(-~,a,-44a,a,)+5~~~,+2a~~,} = 0, ( 5 . 3 a )  

5a,a3(12a:+4a~-55a~)+2a0a1(a;-a~) 

+ 15-1{2a~(a,o1, - a3ao) +a, a, 5 ( 2 4  - a:)} = 0, (5 .3b)  

&Z,OL,( - 1 2 4  - 7a: - 5 4  + 1501;) + 2ala,(~i -a;) 

+ 15-1{01101,(2a1a,+5a,a,)--2a~a,} = 0. (5.3C) 

Three distinct solutions of (5.3a-c) have been found, which are listed here in the form 
in which a maximum number of the coefficients ai vanish. In  addition there exists 
an infinite manifold of solutions which are obtained from those three solutions by 
moving the polar axis within the plane q5 = 0 with respect to a fixed axis. 

Solution A is the axisymmetric solution 

a: = 1 ,  ai = 0 (i = 1 , 2 , 3 ) ,  (5.4a) 

yielding R(') = M ( 3 , 0 ) + & W ( 3 , 1 ) + & M ( 3 , 2 ) + ~ M ( 3 , 3 ) .  (5.4b) 

Solution B exhibits a tetrahedral symmetry 

a: = 1, a, = a, = a3 = 0, (5.5a) 

corresponding to  R(2) = M(3,O)  +$M(3 ,2 )  +&M(3,3) .  (5 .5b)  

Some other simple descriptions of the tetrahedral solution are given by 

(5 .5c)  01.2 1 - 8 ,  - 5 a;=& a o = a 2 = o ,  a,a3>0, 

or a: = 5,  a; = $, a, = 01, = 0. 

Solution C is given by a: = 1 ,  a, = a1 = 01, = 0, 

(5.5d) 

( 5 . 6 ~ )  

and yields R(2) = M ( 3 , 0 ) + 5 M ( 3 ,  l ) + & M ( 3 , 2 ) + - M ( 3 , 3 ) .  (5 .6b)  
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The same solution can also be given in the transformed positions 

a: = g, a: = &, a. = a2 = 0, a,a3 < 0, 
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or a; = 8, a: = i, a1 = a3 = 0. 

It is expected that there does not exist any solution of equations (5.3), (2.14) that  
does not represent a transformation of solutions A ,  B or C. But we have not been 
able to produce a rigorous proof of this hypothesis. 

6. Stable convection flows 
The existence of more than one steady solution for 1 >, 2 makes it necessary to 

investigate the stability of the solutions in order to determine the physically preferred 
mode of convection. I n  contrast to (3.11) determining the steady solutions, the 
equations determining the disturbances and their growth rates depend in general on 
the radial dependence of the problem. A special case must be chosen in order to derive 
explicit expressions for the eigenvalues u. I n  $7 such a case is considered which 
permits an analytical evaluation of all functions of the radial co-ordinate. Before 
entering that analysis it is useful to derive general expressions for the eigenvalues 
u@) in the cases 1 = 1 , 2  and 3. As will be shown in this section the question of stability 
can be decided in many instances without reference to the numerical values of special 
cases. 

The analysis of the stability equations (4.12) is particularly simple in the case 1 = 1. 
The vanishing of the determinant of the matrix of coefficients of the unknown ai in 
the system of equations ( 4 . 1 2 ~ )  yields 

det ( M ,  u ( y r )  +,.a; 2a, a, ) = o ,  

with g f 2 )  = 0, ~ $ 2 )  = -2R(2)/M2 ( 6 . 1 ~ )  

as eigenvalues. Equaticn (4.126) yields a third eigenvalue 

6.1. The case l = 1 

0 1  M , u ( ~ ) / R ( ~ )  +2a; 

UP) = 0. (6.16) 

These results indicate that the steady solution in the case 1 = 1 is stable as expected. 
The vanishing eigenvalues d2) correspond to two independent rotations on the sphere, 
while the negative eigenvalue corresponds to  a disturbance of the same form as the 
steady solution. The case 1 = 1 has also been discussed by Geiger (1977) in the context 
of convection in a full sphere. 

6.2. The case 1 = 2 

The determinant for ( 4 . 1 2 ~ )  can be written in the form 

M2 d 2 ) / R @ )  + 2a; 2aoal 2a0 a 2  

M ,  u(2)/R(2)  + 2 4  
2ao a2 2011% M2u(2) /R(2)  +2ai 

2a, 01, 

which yields the eigenvalues 

,(2) = -2R(Z)/M up = ($2) 3 = 0. 

u p  = g p  = 0. 

2, 

Equations (4.126) yield the additional eigenvalues 

( 6 . 2 ~ )  

(6.2b) 
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These results are independent of the coefficients a,L of the steady solution. The 
stability analysis thus does not allow different solutions to be distinguished to  this 
order of the problem. Higher orders must be investigated in the self-adjoint case to 
resolve the degeneracy. But in the general non-self-adjoint case the problem is 
essentially solved to order c2 .  According to B75 the solutions a, = f 1 are the only 
ones satisfying the solvability conditions a t  that  order. The growth rates for both 
solutions can be written in the form 

M 2 g 1 -  - -&(I) - 2&2R(2), 

M , a 2  = M,u, = 0, 

M 2 a ,  = 3eR(l) = M 2 a , ,  

(6.3a) 

(6.3b) 

( 6 . 3 ~ )  

where R(1) = 3201 zMo(2)ao 

may have both signs, while R(,) is given by expression (5 .2) .  Assuming that the latter 
is positive, as is usually the case, we find that the stability of the axisymmetric 
so1ut)ion requires a,M0(2)  < 0. 16.4) 

When this condition is sat'isfied the respective axisyrnmetric solution is stable for 

Here, as elsewhere in the paper, i t  has been presumed that E assumes positive values 
only. The condition (6.5) indicates that  the axisymmetric solution is stable on its 
upper branch in the ( E ,  &)-diagram, since the equality sign in (6.5) corresponds to the 
point where the Rayleigh number reaches its minimum value. In  this respect the 
axisymmetric solution resembles closely the hexagon solution for a plane convection 
layer (Busse 1967). As in the latter case the approximate validity of conditions such 
as (6.5) requires, of course, that  1 Rtl)  1 6 R@) ,  since otherwise higher-order terms must 
be taken into account. 

6.3. The case 1 = 3 

I n  general it cannot be expected that the stability equations (4.12a, b )  permit explicit 
analytical expressions for the eigenvalues a(,). But in the cases of the steady solutions 
(5.4a), (5.5a), (5 .6a)  the determinants of the matrices from which the eigenvalues 
a(,) are derived become especially simple. I n  cases A and C the non-diagonal elements 
of the coefficient matrices of (4.12a, b )  vanish entirely, and in case B only two 
non-diagonal elements differ from zero. Moreover those latter elements are propor- 
tional to the corresponding diagonal elements such that d2) = 0 is an eigenvalue. The 
following expressions for the seven eigenvalues for each of the solutions are found. 

Case A ,  a: = 1: 

(6.6) 

(6.7) 

1 
M , g P )  = -2R(2),  A 

M,aL2) = M ,  ak2) = 0, 

M,v$') = - & M ( 3 , 1 ) + & M ( 3 , 2 ) - - M  121.39 (3, 3, = M2a$i2) ,  

M2ai2)  = $M(3,  l ) - # M ( 3 , 2 ) + & M ( 3 , 3 )  = N2ap) .  

M2ai2)  = -2Rg) ,  Case B,  a; = 1: 

M2g$2) = --M 9 (3 .1)  +#M(3,2)-&%&(3,3), 

M,(T$') = - $ M ( 3 , 1 ) + @ M ( 3 , 2 ) - * M ( 3 , 3 )  = M , U ~ ) ,  

M ,  ai2) = M2 @) = M ,  up) = 0. 
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FIGURE 1. Lines of constant radial velocity corresponding to quarters of the maximum value. Motion 
is inward in the shaded areas and outward in the white areas or vice versa. 

Case C, a: = 1 : 

(6.8) 1 M2ai2)  = - 2 R g ) ,  

M 2 a p )  = M ( 3 , 1 ) - # M ( 3 , 2 ) + & M ( 3 , 3 ) ,  

M2ai2)  = $M(3,1)-#M(3,2)++&M(3,3) = M2aQ2), 
M 2  vj2) = M ,  = M ,  a(,2) = 0 .  

These expressions are as general as the expressions (5.4b), ( 5 . 5 b ) ,  (5 .6b )  for R(2). 
While i t  can generally be concluded that R(2) is positive because of the dominating 

positive contribution M ( 3 , 0 ) ,  little can be concluded about the signs of the above 
expressions for a(*). But the remarkable property that 

(6.9) 4 2 )  = - 2  2) 
30.1 

holds in case A permits the immediate conclusion that the axisymmetric solution is 
always unstable except in the singular case = 0, which requires consideration of 
cont>ributions of higher order. If M ( 3 , 3 )  is positive and of case B negative, the 
tetrahedral solution is stable because uh2) > gi2), while solution C is unstable because 

M , ( a & 2 + + 4 3 )  = #@f(3,3), (6.10) of the relationship 

where the second subscript indicates the respective steady solution. As will be 
discussed in more detail in § 7 ,  the above assumptions are usually satisfied. 



296 F.  H .  Busse and N .  Riahi 

Since in addition to (6.10) the relationship 

M,(a$2$ +$a$?) = -*"3,3) (6.11) 

holds, solution C is unstable if solution B is stable, and vice versa, independent of the 
sign of M(3,3). Since at least one solution must be stable according to the extremum 
principle given in appendix C, i t  can be concluded that one and only one solution 
is physically realizable. A sketch of solution B displaying the tetrahedral symmetry 
is shown in figure 1. 

7. Convection in a thin spherical fluid layer 
I n  order to  discuss in more detail the expressions derived in the preceding sections, 

a special case will be considered in this section. Because it permits simple analytical 
expressions for the radial dependence of all dependent, variables, the limit of a thin 
fluid shell with nearly insulating boundaries has been selected. Other cases of more 
physical interest are considered in Riahi, Geiger & Busse (1982). 

We consider (2.4) in the special case 

f ( r )  = 1, T ( r )  = r ( r O + + ) - l ,  (7.1) 

and assume rigid boundaries of uniform thermal conductivity on both sides of the 

(7.2a) 
fluid layer: a 

@ = - @ = O  at r = r  0, r 0 + 1 ,  ar 

(7.26) 

0, denotes the temperature perturbation outside the fluid layer and p is the ratio 
of the thermal conductivity outside to that inside the fluid layer. Following the 
corresponding analysis for a plane layer (Busse & Riahi 1980 ; hereinafter referred 
to as BR) we look for solutions of the problem in the limit of small p and introduce 

y+ (7.3) 

as perturbation parameter. At the same time the limit of a thin shell is assumed such 
that ro tends to infinity with p-4: 

(ro+2)-2 = r 2 y ,  (7.4) 

where 7 is a parameter of the order unity. Solutions of the problem described by (2.4), 
(7 .1) ,  (7.2) can be obtained by expanding the coefficients in the series (2.7) in terms 
of powers of y :  m m 

X(f l )  = C YYXP), R(n) = yYRP) (n  = 0,1 ,  . . . ). 17.5) 
p=O /L=O 

Starting with the linear problem given by the terms of order e in (2.4) it is found 
that the results are analogous to those of BR. After introducing 

and using z = r - ( r o + + )  as new variable, the results 

are found a t  lowest order, where c is a constant that  for simplicity will be set equal 
to unity. The exterior temperature distribution 0, enters the problem only in the 
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solvability condition for the order y2 of the temperature equation. Using the equation 
V 2 0 ,  = 0 outside the fluid layer, the boundary condition (7.2b) can be rewritten as 

(7.8a) 

(7.8b) 

At second order in the linear problem the results 

gl(z) = Z ( Z +  l ) r 2 ( ~ ( $ ) 6 - ~ . 2 + % z 4 - - 6 ) ,  (7.9a) 

fi(;) =Z(l+ l )r2Rp)[-(2~)10+ 15(2~)*+ 1 2 6 ( 2 ~ ) ~  

- 8 1 0 ( 2 ~ ) ~ +  1187(2~)~-517] 6!/10!2”, (7.9b) 

are obtained. 
(7.9c) 

The minimum of the expression ( 7 . 9 ~ )  as a function of 1 is achieved by 

1 = 1  ( 7 3 % ) .  

(x /. r 3 %L 
z = 3  (%3q3&) ,  

= 3 154 > 

and so on, by increasing values of Z as the inner radius ro of the field shell increases 
a t  fixed value of the conductivity ratio /I. 

The equations of order e2 correspond closely to those solved in BR. Because the 
condition (2.17) is satisfied R(l) vanishes. The following expressions are obtained for 
Qk. where terms of the order y2 have been neglected; 

G,(z) = [Z(Z+l ) -k (2k+  l)]  7j27r(5z5-+~’++~)/4! ( k  2 l ) ,  (7.10a) 

G,(z) = Z ( Z +  1 ) ~ 2 ~ ( ~ ~ 5 - & 3 + ~ ~ ) / 4 ! .  (7.10 b) 

Since the mean temperature difference across the spherical fluid layer is fixed, the 
boundary condition (7.2b) assumes the form 

0 = 0 at r = ro,ro+l  (7.11) 

for the spherically averaged part @ of 0. For this reason the z-dependence of G,(z )  
differs from that of G k ( z )  for k 2 1 .  The functions (7.10) can be used to  calculate 
expressions (3.9) and (4.8), with the result 

M ( I , k )  = ~ y r ~ z ( z + l ) ( l - ~ ( 2 ~ + l ) ) 2  Z ( Z +  1) (1  < k < Z), (7.12a) 

M(2,O) = &yr”(Z+ 11, (7.12b) 

- 

1 
M2(Z) = - 

1(Z+ 1)’ 
(7.13) 

Since M(Z, k )  is positive for all values of k ,  is positive as expected. The individual 
values for the different solutions discussed in $5  can be easily computed with the help 
of (6.1 1) and will not be given here. Instead attention will be focused on the problem 
of stability. 

of (6.6) and a!j2), c@ and crg2) 
of (6.8) are positive, while all other eigenvalues are either negative or vanishing. It 

When (7.12a) is used, it is found that ap) and 
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must thus be concluded that among the three possible solutions for 1 = 3 only the 
solution exhibiting the tetrahedral symmetry is physically possible. This is not 
surprising in view of the fact that  its heat transport is a maximum a t  a given positive 
value of R-R, because Rg) is smaller than either R$) or R@). 

In  accordance with the above conclusion i t  is found that the growing disturbances 
of solutions A and C tend to transform the respective solutions into the stable solution 
B. In  case A the growing disturbances are 

z3 * 0, &i = 0 (i * 3), (7.14a) 

& * 0 ,  p t = o  ( i * 3 ) ,  (7.14 b )  

which indicates that  a solution of tetrahedral symmetry of form (5.5d) or the solution 
turned by 90' about the polar axis is approached. Similarly, in case C the growing 
disturbances are given by 

&()*0, &i=0 ( i > 0 ) ,  (7.15a) 

ill * 0, &< = 0 ( i  * l ) ,  (7.15b) 

/%a;0, Di=0 (i*1), ( 7 . 1 5 ~ )  

which indicates again that the tetrahedral solution in the description (5.5d) is 
approached by the disturbance (7.15a) while the disturbances (7.15b, c) indicate a 
tendency towards the description ( 5 . 5 ~ )  and the description obtained from ( 5 . 5 ~ )  
by a rotation of 90' about the polar axis. 

8. Concluding remarks 
One of the unresolved questions posed by the preceding analysis concerns the size 

of the class of solutions for a given value of 1 that  cannot be obtained by rotations 
from each other. For 1 = 1 this class contains only one solution. For even values of 
1 each solution of the form (2.10) must be counted twice since a change of the sign 
of the solution cannot be achieved by a rotation on the sphere. Assuming the general 
case R(') 0 for even 1 it was shown in B75 that  the cases 1 = 2, 4 and 6 yield 2, 4 
and 8 separate solutions respectively. But it has not been rigorously proved that there 
may not be additional solutions for 1 = 4 and 1 = 6. I n  this paper it is shown that 
at least three &parate solutions exist for 1 = 3. While the rigorous proof is not 
available, the existence of an additional solution appears to be rather unlikely. The 
fact that the extremum principle first derived by Busse (1967) for a plane convection 
layer is also valid in the spherical case as shown in appendix C implies that  there is 
a t  least one stable solution since the function (C 1 )  must have a t  least one maximum. 
But in general i t  cannot be excluded that there is more than one stable solution 
corresponding to two or more local maxima of the function (C 1 ) .  The simultaneous 
stability of convection rolls and hexagonal convection in a plane layer for a certain 
range of Raylcigh numbers (Busse 1967) represents such an example. For the case 
i = 3, however, the arguments given a t  the end of $ 6  eliminate this possihility. 

While the results of this paper except for those of $ 7 are general in that they require 
only the spherical symmetry of the basic state, they are limited by the condition that 
E be small, i.e. only small deviations from the basic state are permitted. But since 
the analysis has been mainly concerned with symmetry properties, the results are 
hardly affected by the condition of small E .  The symmetry of the solutions cannot 
be changed by the contributions of higher order in e unless a further bifurcation takes 
place, i.e. the convection pattern becomes unstable. Because of the exceptlonal 
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symmetry of the preferred solutions it is expected that those solutions retain their 
distinction for an extensive range of Rayleigh numbers. Existing numerical solutions 
do not contradict this conclusion. But the evidence from numerical analysis such as 
the computation of axisymmetric convection by Schubert & Zebib (1980) is 
complicated by the fact that patterns of convection appear to be stable which exhibit 
a symmetry that can only be described by a superposition of spherical harmonics of 
different degree 1. Within the realm of the present analysis it is possible to discuss those 
cases by assuming that the difference between the values R(O) for 1 and 1 + 1 is of order 
2. But this extension of the problem will not be considered here. 

The research reported in this paper has been supported by the Earth Sciences 
Section of the U.S. National Science Foundation. 

Appendix A 

is obtained : 
By scalar-multiplying the curl of the equation of motion by r the equation for $ 

(VZ--F~;)L,I = - p l r .  v x [u x (V x u)]. (A 1) 

In  this appendix it is shown that the right-hand side of ( A l )  vanishes for 
u = V x (V x a(%), where W1) is of the general form (2.9). Using V x u = r x VV2@(l) 
the following relationshp can be derived : 

r . V x (u x (V x u)) = r . V x {[V x (V x r@(l))] x (r x VV2W1))} 
= r . V x {rVV2W) . V x (V x r@( l ) ) -VVZW) ( L z W 1 ) ) }  
= -r . VL, W1) x VV2W1) = 0. (A2) 

The last equality follows from the fact that the r-dependence of separates from 
the (4, 8) - dependence, and the latter is given by a spherical harmonic. Thus the 
vertical component of vorticity given by Lz$ is of order e3 a t  most. 

Appendix B 
Those termsin the solvability conditions of ( 3 4 ,  (3.7), (4.6) and (4.11) that  involve 

$- and @derivatives can be transformed into terms without those derivatives with 
the help of the following relationship : 

2(Ykvzu1l .vzL(’F) = (Yk(vZu1l .v,?flT+vzwF. vzwl)) 

= 21(1+ 1) (Ykw,w,*)-(vz Yk. vz(w,w:)) 

= [%(i+ l ) - -k(k+ I)]  (YkwlwF)? (B 1) 

where wl and w~ denote two arbitrary spherical harmonics of order 1, and Yk denotes 
an arbitrary spherical harmonic of degree k. V,wl denotes the two-dimensional 
gradient of u,, on the unit sphere. 

Appendix C 
The solvability conditions for the steady solution, (3.2), (3.8) and for the stability 

equations (4.8), (4.12) can be derived from an extremum principle. I n  analogy to the 
corresponding extremum principle for a planar convection layer (Busse 1967) it can 
be formulated in the following way. 
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Among all solutions of the form (2.9), (2.10), those for  u4ich thr function 

1 '  
2 m=-l 

E'(C-', . . . ,  pi)  (R-Rco))- c ~ ' Z , + g ~ ~ 0 ( l ) ( ~ ~ ' 7 ( ' 1 1 4 ' 1 )  

1 '  2k +a c M(I, k )  c. (qk 7C'Z 1A'JZ (t' 1) 
k=O ] = - 2 h  

reaches a stationary value correspond to steady solutions of the nonlinear problem in thu 
limit 6 4 0. Those solutiom (2.10) f o r  which the stationary z~aluu is a ninximum are stable. 
To simplify the notation the following definitions h a w  been used. 

(C' 2 )  

YpI(0, g5) = @(O, $). (C' 3) 

The necessary condition for a stationary value of function (C 1) is 

aF 
0 = -= ( ~ - R ( o ) ) ~ ' m + ~ ~ o ( l ) ( l L ~ ' l ~ ~ '  1'2") 

1 2k 

k=O ]=-2k 

a c m  

+ c. M(I ,  k) c ( 1 7 $ k l l > z l q )  (Y$a 1u/ YI") ( - I  < 111 < l ) ,  (C 4) 

which yields the solvability conditions ( 3 . 2 )  and (3.8) a t  order ez and e3 respectively. 
I t  should be noted that the simplifying assumption (3.13) has not been used. The 
stationary value defined by (C 4) represents a maximum if all eigenvaluw of the 
matrix 

= (R-R(0))6,, +2M0(Z) (q Yz" YI") a2F 

ac, dc, 

arenegative-definite. A comparisonwith (4.7) and (4.12) indicates that the expressions 
for M2d1)  and M , d 2 )  correspond to the eigenvalues of the matrix (C 5) at order e 
and c2 respectively. 
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