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Patterns of convection in spherical shells. Part 2
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The analysis by Busse (1975) of preferred patterns of convection in spherical shells
is extended to include the case of odd degrees [ of spherical harmonics. In the general
part of the paper only the property of spherical symmetry of the basic state is used.
The results are thus applicable to all bifurcation problems with spherical symmetry.
Except in the case [ = 1 a pattern degeneracy of the linear problem exists, which is
partly removed by the solvability conditions that are generated when nonlinear terms
are taken into account as perturbations. In each of the cases ! considered so far, at
least [ physically different solutions have been found. The preferred solution among
| existing ones is determined for / > 2 by a stability analysis. In the case [ =3
emphasized in this paper the axisymmetric solution is found to be always unstable,
and the solution of tetrahedronal symmetry appears to be generally preferred. The
latter result is rigorously established in the special case of a thin layer with nearly
insulating boundaries treated in the second part of the paper.

1. Introduction

The problem of convection in spherical shells with spherically symmetric physical
conditions is of interest from several points of view. The early work on linear aspects
of the problem, which is conveniently reviewed in Chandrasekhar’s (1961) monograph,
has been motivated by the hypothesis of convection flow in the Earth’s mantle. The
increasing evidence for solid-state convection in the earth and in other terrestial
planets, at least throughout parts of their thermal history, has stimulated a number
of nonlinear analyses of the problem of convection in spherical shells (Young 1974;
Busse 1975; Zebib, Schubert & Straus 1980; Schubert & Zebib 1980). But there are
other applications as well. The physical conditions of convection zones in stars are
spherically symmetric if the rotation rate is sufficiently low. Moreover the results
obtained in the theory of convection can be applied to other cases of instability of
a spherically symmetric system such as the buckling of spherical shells. In fact any
problem involving a symmetry-breaking bifurcation from a spherically symmetric
state leads to the same problems of pattern selection as those that can be discussed
in the case of convection.

From the mathematical point of view, convection in spherically symmetric layers
is of special interest because of the finite degeneracy of the bifurcation problem. Since
the degree of pattern degeneracy is closely related to the degree ! of spherical
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harmonics that is preferred according to the linear theory of the problem, the degree
of pattern degeneracy varies primarily with the radius ratio of the boundaries of the
shell, and a rich variety of bifurcation problems can be studied in terms of the
dependence on the latter parameter. The case I = 2 has received most of the attention
so far (Chossat 1979; Golubitsky & Schaeffer 1982}, but other cases may prove to
be of no lesser mathematical interest once the ar Jropriate group-theoretical methods
arc available (Sattinger 1980).

The main mathematical problem of convection in spherical shells is the determi-
nation of independent solutions of the basic equations. Because most of the solutions
given in the form of the usual superposition of spherical harmonics are transformations
of each other, it is a non-trivial task to enumerate those solutions that cannot be
transformed into each other by rotation on the sphere. In this paper sets of
independent solutions will be derived, but a rigorous proof for the completcness of
the sets is not available in most cases. Of primary physical interest are the stable
solutions of the problem. For this reason a stability analysis is carried out in this paper
in addition to the determination of the steady solutions of the problem.

In order to keep the discussion of the problem as general as possible, no special
assumptions about physical properties will be made (except for the consideration of
a special case at the end of the paper). The main restriction of the analysis is that
the Rayleigh number must be close to its critical value such that the amplitude of
convection is small and an expansion in powers of the amplitude is feasible. In this
respect the paper is an extension of an earlier work of Busse (1975, hereinafter
referred to as B75). By carrying the perturbation analysis of that paper to the third
order in the amplitude of convection it becomes possible to derive some general
properties of cases with odd degrees I of the spherical harmonics. In B75 preferred
solutions have been derived only in the case of even l. In particular, it was shown
that convection modes exhibiting the symmetries of four of the five Platonic bodies
are preferred in the cases of I =4 and I = 6. In this paper it will be demonstrated
that convection with tetrahedronal symmetry is preferred in the case I = 3.

The paper starts with a description of the basic equations and a formulation of
the perturbation analysis in §2. To emphasize the general properties of the analysis,
dependent variables are combined into a vector variable, and matrix operators are
introduced. Steady solutions are discussed from the general point of view in §3, and
evaluated for particular values of the degree [ of spherical harmonics in §5. Similarly,
a general stability analysis of the steady solutions is described in §4, while an
evaluation of the expressions for the growth rates of disturbances for particular values
of | is postponed until §6. In §7 the limit of a thin shell with nearly insulating
boundaries is assumed, which permits the derivation of explicit analytical expressions.
The paper closes with some concluding remarks in §8.

2. Mathematical formulation of the problem

We consider a spherical fluid layer of thickness A which is bounded by two
concentric spherical surfaces with radii 7,2 and (ry41)A. The fluid is subject to a
spherically symmetric gravity force and contains a spherically symmetric distribution
of heat sources. The properties of the core inside the fluid layer are also assumed to
exhibit spherical symmetry. Because of its symmetry the problem permits a steady
static solution of pure conduction with a temperature drop AT across the fluid layer.

Using k. h%/k. and AT as scales for length, time and temperature respectively, where
k is the thermal diffusivity, the basic equations in the Boussinesq approximation can
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be written in the dimensionless form given in B75. Here we proceed by introducing
the general representation for the solenoidal velocity vector u

u=Vx(Vxr®)+Vxry. (2.1)
By scalar-multiplying the curl of the curl of the equation of motion by r the following

scalar equation for @ is obtained:

(VZ—P‘I%> V2L, ® — Ry(r) L,®/(ro+3) = P'r . Vx{Vx (ux (Vxu))}. (2.2a)

The heat equation for the deviation ® of the temperature from the dimensionless
static temperature distribution 7'(r) is given by

(V2—3>@+M= u.ve. (2.25)
ot r
The operation L, represents the negative two-dimensional Laplacian on the unit
sphere, i.e. in spherical co-ordinates (r, 8, ¢)
! 9nel L O

sin 8 06 06 sin®@og?
The Rayleigh number R and the Prandtl number P are defined by

R = HATR v
KV K

L,=

where « is the coefficient of thermal expansion, v is the kinematic viscosity and g,
is the gravitational acceleration at r = r,+4, such that the function y(r) becomes unity
at r =r,+1.

There is no need to consider an equation for r as far as the analysis is carried out
in this paper.

Chandrasekhar (1961) has shown that the equation for i admits only decaying
solutions when the nonlinear terms are neglected. Thus ¢ can be at most of order
€2 if € is a measure of the amplitude of convection. In appendix A it is shown that
¥ can be at most of order €%, since the right-hand side of the equation for iy vanishes
in order €2. This property is analogous to the corresponding property in the case of
a plane layer, (Schliiter, Lortz & Busse 1965) and holds for the stability analysis
as well.

To simplify the notation, ® and ® are combined into a two-dimensional vector
XT = {(ry+1)®, O}, and the matrix operators
—ViL, O) _ (O v(r) L2> V= (— P1Vi, O)

-l

T (r)[r(re+4H1 1L, VE 0 0 0 1

(P Y re+HT. VX VX {(VX(VXI®)) X (I x VV’@)})
QX.X) =( Vx(Vxrd).vO (2.3)
are introduced. Equations (2.2a, b) for steady solutions ®, ®, can thus be written in
the form (W+RU). X = Q(X, X). (2.4)

There is no need to specify boundary conditions at this point. It is sufficient to assume
that the boundary conditions are linear and homogeneous in the variables @, ®:

B, X=0 at r=r,, By.X=0 at r=r,+1. (2.5)

10-2
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In order to investigate the stability of the steady solution X of the boundary-value
problem (2.4), (2.5), infinitesimal disturbances X will be superimposed. Without
losing generality it can be assumed that the time dependence of the disturbances is

of the form exp {at}, with a complex growth rate o. The equations for the disturbances
can thus be written in the form

(W+RU). X =0V .X+Q(X, X)+Q(X.X). (2.6)

Solutions of the nonlinear problem (2.4), (2.5) can be obtained by expanding the
dependent variable X and the Rayleigh number R in powers of the amplitude ¢ of
convection. Here and in the subsequent stability analysis we follow basically the
approach of Schliiter et al. (1965) and Busse (1967) in the case of a plane layer. After
introducing the power series

X=eXD4+e2XD4+3XP 4 ., R=RO4+eRV+E2RD+ ... (2.7)

into (2.4), a hierarchy of linear equations is obtained corresponding to different powers
of ¢. Starting with terms of order e these equations are solved term by term. In this
paper only terms up to order €® will be considered.

In lowest order, (2.4) yields

(W + ROU) XD =0, (2.8)

which has been studied in detail by Chandrasekhar (1961). The general solution can
be written in the form .
DN (ry+3) fr)
X0 = ( oW ) = (g(7)> wy(0, @), (2.9)

where )

l -~
wy(f,¢) = é (ot COS M + B, sin me) P (cos 6) = ZO (0, Y+ 8, YT (2.10)

represents the general solution of
Lyw, = 11+ 1) w;. (2.11)

The functions P(cos 6) differ by a factor from the commonly used associated
Legendre polynomials

Ppa) = |(214+1) (2—8pmo) (—m)! /(I +m) ! PP ().
This definition ensures that
{| P (cos 0) cos mep |2y = | PP*(cos B) sin mp|2) = 1 forall m,l,

where the angle brackets indicate the average over the fluid shell

1 7o+l 27 rm . .
{...)= 47’[7'0(7’0‘*'1)‘*'%]-[% L L ...sin 6d6de ridr. (2.12)

Using (2.11), (2.8) can be reduced to two coupled ordinary differential equations
for f(r) and g(r). In the following it will be assumed that the functions f(r) and g(r)
satisfying the boundary conditions (2.5) have been determined. That value of | will
be assumed which minimizes the eigenvalue R©®. Most of the arguments used in the
following will not depend on this particular choice of I. Since the eigenvalues R©® for
the different [ are distinct in general, only a single value of [ must be considered to
order ¢ of the problem. The singular case when the difference between two eigenvalues
R for different values of [ tends to zero requires special discussion and will not be
addressed in this paper.
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The arbitrariness of the coefficients a,,, f, in expression (2.10) exhibits the
(214 1)-fold degeneracy of the solution of the linear problem. Not all solutions of the
form (2.10) correspond to solutions of the nonlinear problem in the limit € = 0. The
main task of the analysis in §3 is the determination of the constraints on the
coefficients. This task is complicated by the fact that together with any given solution
of the form (2.10) all solutions obtained by rotations of the given solution belong to
the manifold of solutions of the problem. To simplify the analysis we shall follow B75
in introducing the assumption that all solutions of the nonlinear problem (2.4), (2.5)
exhibit symmetry with respect to a plane through the centre of the sphere. By
identifying this plane with the plane ¢ = 0 this assumption allows us to set

=0 (0<m<]. (2.13)
For reasons of mathematical convenience we also introduce the normalization

condition !
uil?y = T a2, =1. (2.14)
m=0

Before the higher orders in € of the problem (2.4), (2.5) can be studied the solution
of the adjoint problem to the linear homogeneous problem (2.8), (2.5) must be
discussed. The adjoint operators W+ and U* are given by the transposed forms WT,
UT of the operators W and U. A complete set of independent solutions that are
symmetric with respect to ¢ = 0 can be written in the form

f+(7)> D (o
+ = (4) = AN 1
X3 <g+(7) w¥ (1=0,1, ) (2.15a)
where .
w,= Y ap YP* (¢=0),
m=0
wi®) = (2.15b)
o Yi—a, YT (0<i <),
oy Yi—o, Y? (i=1).
The special choice of the functions (2.15b) allows the condition
CwfP w) = 8y (2.16)

to be satisfied (where d;; is the Kronecker symbol).
Of particular interest is the self-adjoint case, which is characterized by the

condition (W(ﬂ)’ L o
T'(r) :

for all commonly used boundary conditions of the form (2.5). In the self-adjoint case

fHr) o flr), g*(r) ocg(r) (2.18)

holds, and separate computations of the adjoint linear problem are not required.
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3. Perturbation analysis
To order €% (2.4) yields
(W+ROU) . X® = QX®, X1)— ROY XD, (3.1)

A solution of the inhomogeneous equation (3.1) exists if the right-hand side of (3.1)
isorthogonal to all solutions of the adjoint homogeneous problem. Since the right-hand
side is a symmetric function in ¢, it suffices to multiply it by the set of solutions
(2.15) and average the result over the fluid layer. The resulting equations can be

written in the form R® = M (1) {wywyw, ), (3.2a)
0= LwPww)y @FE=1,...,1), (3.2b)

where the property (B1) (derived in appendix B) of spherical harmonics has been used.
The function M(l) is given by

‘gt H(f N (i+1 "D
Moty = (L4 98T LT gy p, g MDD g, gy [)

X {re+3) P(r)f*g>71 (3.3)
where the operator D, is defined by
@ 2d l(l+1)

LT drr T rdr rt

It is easily seen that My(l) = 0 in the self-adjoint case because of the property (2.18).
Because of the symmetry property of spherical harmonics the relationship

wy(0. $) = (— 1) w, (1— 0. +m)

holds, with the consequence that the right-hand sides of (3.2a, b) vanish whenever
lis an odd integer. We thus arrive at the conclusions that R always vanishes for
odd I. and that it vanishes for all / in the case of a self-adjoint linear problem (2.4),
(2.6). The first of these conclusions has been demonstrated in B75, and the second
agrees with the validity of the energy principle in the self-adjoint case (Joseph &
Carmi 1966).

Since (3.2a, b) have been discussed in detail in B75, we proceed by deriving the
solution of (3.1). The structure of the latter equation permits us to write

O (r +1 I /F 2k ] ]
)-GO ol o

k=0 j=0
i.e. the solution is obtained by expanding the right-hand side of (3.1) in terms of
spherical harmonics Y%(6, ¢), of which only those of even degree are needed because
of the symmetry of the problem. Since the solution (3.5) is determined only up to
an arbitrary contribution of the solution of the homogeneous equation, a normaliz-
ation condition is needed. For mathematical convenience we choose the condition

(X U.XDy=0 n=2,3...). (3.6)

D (3-4)

X® = (

To order €* (2.4) yields

(W+ROU) X® = QXM X®@)+Q(X®, XM —-RAOY XV _ROU . X®. (3.7)
Multiplication of the right-hand side by the set of solutions (2.15) and averaging over
the fluid layer yields
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[4 2k
R® = % M(l.k) T {Yiww)?, (3.8a)
k=0 j=0
l 2k ) ,
O = z M(l, k) z <)Y'72k u7lu7l> < )Y%kwlw§i)> (7: = 1, ceny l), (3.8b)
k=0 =0

where M(l, k) is given by

M. k)= <g+ [f (j;‘ + kl((2lli+1;) Gl :f /") + I;:;“)fj)lr) <2g’Fk +g <F;C +%)>]

+ k(2
s oy wery +*EE D (py w08 D)

—HDL DY +E) (D) ) <ovt D70 fg> 7. 9

The investigation of the nonlinear equations (3.8a, b) is facilitated by the apparent
validity of the relationship

2k 2

ZO KYPww) { Y ww®) = C( k) Zo {YPwywy { YRw,wi® (3.10)
p= Prom
fork = tand fori =1, ...,I, where C(l, k) is a function of l and k only. For all values

of I that have been investigated this relationship was found to be valid. But so far
it has not been possible to prove its general validity. When the relationship (3.10)
is accepted as a hypothesis, (3.8b) can be rewritten in the form

0= 3 (YPwwd{ YPwuw®> (G =1,...,10), (3.11)
p=0

provided that the common factor in all the equations (3.85) does not vanish:

!

kZ Cl, ky M. k) 0. (3.12)

=1

Since this condition is generally satisfied, the system of [+ 1 equations for the I+1
unknowns a,, given by (2.14) and (3.11) becomes independent of the r-dependence
of the problem. This remarkable fact extends to cases of odd ! and to the self-adjoint
case the property that the possible steady solutions of the form (2.10) are independent
of the physical specification of the problem. It permits the determination of possible
patterns of convection without knowledge of the functions f(r), g(r), F\(r), Gy(r),
which often require cumbersome computations. Before investigating (3.11) for special
values of I we consider the general problem of stability.

4, Stability analysis

In general, several solutions of the form (2.10) satisfy the solvability conditions
(3.2) and (3.8). It thus becomes necessary to distinguish the physically realizable
solution among the manifold of existing solutions by its stability property. The
stability problem described by (2.6) and the corresponding boundary conditions (2.5)
must be solved for all possible disturbances X. The steady solution X is stable if the
real parts of all eigenvalues o are negative or zero; otherwise it is unstable. After the
expressions (2.7) are inserted in (2.6) it becomes obvious that the solution X, o of
the linear homogeneous problem (2.6) can be obtained in the form

X=XO4X®O4 2RO 4 | 0d=0@+ec®+e20@+.... (4.1)
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To order €® the equation
(W + ROU) XD = gOVKWD (4.2)

is obtained. Since R©® is assumed to be the minimum value for which (2.8) can be
satisfied, 0@ = O represents the growth rate with maximal real part. Accordingly X
can be written in the form

& = (F 5 6. ). .
" (g(”) (0.9) 4.3)
!
W (0.4) = T (d,, cos m@+ B, sin mg) P7*(cos ) = é En Y+, 7). (4.4)
m=0 m=0

The special choice (2.15) of the solutions of the adjoint homogeneous problem does
not provide any advantage in the discussion of the solvability conditions of the
stability equations. Thus the following complete set of solutions of the adjoint
problem will be used.

%= (ol Foiow =on T b 49

To order €! in (2.6) the equation
(W + ROU) X® = gV KO _ ROY XD 4 Q(XW, XM) + QXM, XM) (4.6)

is obtained. Multiplication of the right-hand side by the set of functions (4.5) and
averaging over the fluid layer yields
(RW —a® M,())d; = 2My(l) {Yiw,@®,> (=0,1,...,1), (4.7a)
(RVY—ag® M) B; = 2My(){ Viwyw)y (i =1,2,....0), (4.7b)
where the positive expression M,(l) is defined by
My(l) = {ggt—P I+ 1) frD, f> A+ 1) p(r)frgd>t. (4.8)

As in the discussion of the conditions (3.2a, b) it is readily seen that ¢V vanishes
in the case of odd integers ! and in the self-adjoint case. In the other case the
eigenvalues o are determined by the condition that the determinant of the
coefficient matrix for the unknowns d;, f; vanishes. A particular solution of (4.7) is

iven b
8 Y Mza'(ll) = _R(l), di =y, Igi =0 (7:=0.1, ...,l), (49)

which indicates that the solution with eR® < 0 is unstable.

In cases of odd ! or when the problem is nearly self-adjoint the contribution o®
to the growth rate o becomes important in deciding the stability of the steady
solutions. Assuming that oV and R are vanishing (or at least small compared with
the other terms on the right-hand side of (4.6)) we obtain as a solution of (4.6)

DD (ry+1 Fr(r
X® = < @((g) 2)> = 2k20 <G:E7‘)>1 (Cwy® Yy Y+ Cwydy, Vi) Phy). (4.10)
0
Using this expression, the solvability conditions for the equation of order €2,
(W+ R®U) XO® = gV, XO _ROY XD 4 Q(X®, X(l))+Q(X(1), X @)
+QX® XMW+ QXM X®)  (4.11)
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can be written in the form
2k

4
(R® —a® My(l)) & = T Ml k) T (2w, Y,> Cwy Y YD

k=0 j=0

+<wlu’l YJZ’C> <?I/'l Y]2k Yli>) (i=0,1, ...,l), (4.12@)
l 2k ~ . .
(R®—o® M) B = I MLk T @y Pi<w, T4, D
=0 j=0
+<wl’u)l Y]2k> <1I)l Y]2)C Y%)) (7:= 1,2, ...,l). (4.12())

The system (4.12a, b) of 2/ + 1 linear homogeneous equations is solvable if and only
if the determinant of the matrix of the coefficients of the unknowns &; and j; vanishes.
The eigenvalues o® can thus be determined as the zeros of the determinant. Unlike
the case of the solvability conditions (3.8) for the steady solution, it is not possible
to evaluate the stability equations without Jetailed knowledge of the radial depen-
dence of the problem. The main general conclusion to be drawn from (4.12a, b) is that
the two equations are not coupled and that the matrices of coefficients are symmetric.
The eigenvalues o® are thus real and can be determined by considering (4.12q, b)
separately.

A few eigenvalues o® can be determined directly. By comparing (4.11) with (3.7)
it can be seen that

XD =X® or g=a (=0,...,1)

is a solution of (4.12a) corresponding to
M,o® = —2R®.

In addition it is known that there are two independent possibilities of rotating the

steady solution on the sphere. Therefore there must be at least two eigenvalues
@ = 0.

5. Steady solutions

In this section the remarkable property will be exploited that the coefficients a;
are independent of the radial dependence of the problem according to the relationship
(3.10). The attention will be focused on cases for which R vanishes, since the
problem has been treated for R % 0 in B75. Although the relationship (3.10) permits
a general solution for the coefficients a;, it does not simplify the mathematical
structure of the equations (3.8). Because of the highly nonlinear form of (3.11) only
cases of low values of I can be solved explicitly. It is readily seen that the
axisymmetric solution a2 = 1,a; =0 (¢ = 1, ..., [) represents a solution of the system
(3.8) for all values of I because (3.8b) vanish identically. But there does not seem to
exist any other solution that can be defined independently of . Each [ must thus be
discussed separately.

5.1. The case [ =1
Equations (2.14) and (3.8) yield for I =1

R® = M(1,0)+4M(1,1), (5.1a)

The possible choices of coefficients admitted by (5.1b) correspond to all possible
melinations of the axisymmetric solution a2 = 1 with respect to the axis of the
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co-ordinate system within the plane ¢ = 0. The solvability conditions (3.8) do not
constrain the manifold of solutions (2.10) because each one of the latter represents
a transformation of the axisymmetric solution in the case [ = 1. Thus the stability
problem becomes trivial in this case because of the absence of competing states of
convection.

5.2. Thecasel =2

Unlike the case [ = 1 a true pattern degeneracy exists for I = 2. The term pattern
degeneracy applies to physically distinguishable solutions, in contrast to the orien-
tational degeneracy, which originates from the rotations of a given solution on the
surface of the sphere. In the non-self-adjoint case the axisymmetric mode alone
satisfies the solvability conditions (3.11) according to B75. But in the self-adjoint case
the pattern degeneracy cannot be removed since (3.11) vanish identically for [ = 2.
Since the self-adjoint case represents a relatively special problem and since a detailed
discussion is given by Golubitsky & Schaeffer (1982) we shall not consider this case
further. The expression for R® is given by

R® = M(2,0)+38M(2,1)+38M(2,2), (5.2)

independently of the values of the coefficients a;.

5.3. The case | =3
Equations (3.11) assume the following form for I = 3:
Lo, o, ( —8ad+ 202+ 5o — 10ad) + 20ty ag(a —al)
+ 15 Hda, ap( — g @y — 4o, a5) +had oy + 2032} = 0, (5.3a)
3oy aq(12af + 4ai—baf) + 200 @, (a3 —af)
+ 157223 (o,a —agxg) + 00, X, 5(2a2 —ad)} = 0, (5.3b)
losa(— 120k —Tat—5ak + 15a2) + 2, o, (a2 — a2)
+ 157 a, a,y(2a, 0ty + Sty ag) — 203 g} = 0. (5.3¢)
Three distinet solutions of (5.3a—) have been found, which are listed here in the form
in which a maximum number of the coefficients «; vanish. In addition there exists
an infinite manifold of solutions which are obtained from those three solutions by

moving the polar axis within the plane ¢ = 0 with respect to a fixed axis.
Solution A4 is the axisymmetric solution

=1, a;=0 (i=123), (5.4a)
yielding R® = M(3,0)+38M(3,1)+ 55 M(3,2)+ 19000 3/(3, 3). (5.4b)
Solution B exhibits a tetrahedral symmetry

aZ=1, o=, =a,=0, (5.5a)

corresponding to R® = M(3,0)+85M(3,2) + 895 M(3, 3). (5.58)
Some other simple descriptions of the tetrahedral solution are given by

a?=3% al=3 oa,=a,=0, a,a,>0, (5.5¢)

or az=3% at=% oa,=a,=0. (5.5d)

Solution C'is given by a2=1, ay=a, =a, =0, (5.6a)

)

and yields R® = M(3,0)+3M(3, 1)+ 23 M(3,2)+ 1388 M (3. 3). (5.6b
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The same solution can also be given in the transformed positions
=8 o= a=0=0 o2<0,

or a% =

Qofen
®jes

, ai=3% o, =a,=0.

It is expected that there does not exist any solution of equations (5.3), (2.14) that

does not represent a transformation of solutions 4, B or . But we have not been
able to produce a rigorous proof of this hypothesis.

6. Stable convection flows

The existence of more than one steady solution for / > 2 makes it necessary to
investigate the stability of the solutions in order to determine the physically preferred
mode of convection. In contrast to (3.11) determining the steady solutions, the
equations determining the disturbances and their growth rates depend in general on
the radial dependence of the problem. A special case must be chosen in order to derive
explicit expressions for the eigenvalues o. In §7 such a case is considered which
permits an analytical evaluation of all functions of the radial co-ordinate. Before
entering that analysis it is useful to derive general expressions for the eigenvalues
o9 in the cases ! = 1, 2 and 3. As will be shown in this section the question of stability
can be decided in many instances without reference to the numerical values of special
cases.

6.1. The casel =1
The analysis of the stability equations (4.12) is particularly simple in the case I = 1.

The vanishing of the determinant of the matrix of coefficients of the unknown «; in
the system of equations (4.12a) yields

det(M2 P /R® 4242 20,y ) —0
a4, M,c@/R® 4243 ’
with P =0, o =-2R®/M, (6.1a)
as eigenvalues. Equaticn (4.12b) yields a third eigenvalue
P = 0. (6.1b)

These results indicate that the steady solution in the case I = 1 is stable as expected.
The vanishing eigenvalues o® correspond to two independent rotations on the sphere,
while the negative eigenvalue corresponds to a disturbance of the same form as the
steady solution. The case ! = 1 has also been discussed by Geiger (1977) in the context
of convection in a full sphere.

6.2. The casel =2
The determinant for (4.12a) can be written in the form

M,o®/R® +2a2 2aya, 2000y
det| 2a,a, M,0?/RP+2a2 2a,a, =0,
2y, 20,y M,0®/R® + 242

which yields the eigenvalues
o® = —2R® /M, o =0 =0. (6.2a)
Equations (4.12b) yield the additional eigenvalues
o =o® =0. (6.25)
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These results are independent of the coefficients «; of the steady solution. The
stability analysis thus does not allow different solutions to be distinguished to this
order of the problem. Higher orders must be investigated in the self-adjoint case to
resolve the degeneracy. But in the general non-self-adjoint case the problem is
essentially solved to order €. According to B75 the solutions ay = +1 are the only
ones satisfying the solvability conditions at that order. The growth rates for both
solutions can be written in the form

M,o, = —eRW —2¢2R®, (6.3a)

M,o, = M0, =0, (6.3b)

M,o, = 3cRY = M,0;, (6.3¢)
where RO = 1208 M (2)a,

may have both signs, while R® is given by expression (5.2). Assuming that the latter
is positive, as is usually the case, we find that the stability of the axisymmetric

solution requires oo My(2) < 0. (6.4)
When this condition is satisfied the respective axisymmetric solution is stable for
€2 |RV|/2RD. (6.5)

Here, as elsewhere in the paper, it has been presumed that ¢ assumes positive values
only. The condition (6.5) indicates that the axisymmetric solution is stable on its
upper branch in the (¢, R)-diagram, since the equality sign in (6.5) corresponds to the
point where the Rayleigh number reaches its minimum value. In this respect the
axisymmetric solution resembles closely the hexagon solution for a plane convection
layer (Busse 1967). As in the latter case the approximate validity of conditions such
as (6.5) requires, of course, that | RV} < R® since otherwise higher-order terms must
be taken into account.

6.3. The casel =3

In general it cannot be expected that the stability equations (4.12a, b) permit explicit
analytical expressions for the eigenvalues a®. But in the cases of the steady solutions
(6.4a), (5.5a), (5.6a) the determinants of the matrices from which the eigenvalues
o® are derived become especially simple. In cases A and (' the non-diagonal elements
of the coefficient matrices of (4.12a, b) vanish entirely, and in case B only two
non-diagonal elements differ from zero. Moreover those latter elements are propor-
tional to the corresponding diagonal elements such that ® = 0 is an eigenvalue. The
following expressions for the seven eigenvalues for each of the solutions are found.
Case A, al=1:
M,o{® = —2R®D,

M,oc® =M,0(® =0,

6.6
Moo = —F M3, 1)+{5M(3,2)— 3% M(3,3) = M0, (66)

Myo® = 3M(3,1)—138M(3, 2) + 1304 M(3.3) = Mzo'gz)-

Case B, a2z =1: M,o® = —2R®,

M,o = —§M(3.1)+130M(3, 2) —#93%:.M (3. 3), (6.7)

M,o® = —8M(3,1)+180M(3,2)— M0 M(3,3) = M,c{?,

M,o® = M,o{® = M,0(® = 0.
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F1cUre 1. Lines of constant radial velocity corresponding to quarters of the maximum value. Motion
is inward in the shaded areas and outward in the white areas or vice versa.

Case C, a2 =1:
M,o® = —2RP,
Moo = M3, 1)—18M(3,2) + 3= M3, 3),
Mo = 3M(3,1)— M3, 2)+ %M (3, 3) = Myof?,
Myo® = M,o0$ = Myo® = 0.

(6.8)

These expressions are as general as the expressions (5.4b), (5.5b), (5.65) for R®,

While it can generally be concluded that R® is positive because of the dominating
positive contribution M(3,0), little can be concluded about the signs of the above
expressions for ¢®. But the remarkable property that

o = —2o(? (6.9)

holds in case A permits the immediate conclusion that the axisymmetric solution is
always unstable except in the singular case ¢{? = 0, which requires consideration of
contributions of higher order. If M(3,3) is positive and o{? of case B negative, the
tetrahedral solution is stable because o{® > o®, while solution C is unstable because

of the relationship M (03 +50) = 284 M(3,3), (6.10)

where the second subscript indicates the respective steady solution. As will be
discussed in more detail in §7, the above assumptions are usually satisfied.
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Since in addition to (6.10) the relationship
My(o{B+3012) = —o355M (3. 3) (6.11)

holds, solution (' is unstable if solution B is stable, and vice versa, independent of the
sign of M(3, 3). Since at least one solution must be stable according to the extremum
principle given in appendix C, it can be concluded that one and only one solution
is physically realizable. A sketch of solution B displaying the tetrahedral symmetry
is shown in figure 1.

7. Convection in a thin spherical fluid layer

In order to discuss in more detail the expressions derived in the preceding sections,
a special case will be considered in this section. Because it permits simple analytical
expressions for the radial dependence of all dependent, variables, the limit of a thin
fluid shell with nearly insulating boundaries has been selected. Other cases of more
physical interest are considered in Riahi, Geiger & Busse (1982).

We consider (2.4) in the special case

y(ry=1, T'(r)=r{ro+2)7", (7.1)
and assume rigid boundaries of uniform thermal conductivity on both sides of the
fluid layer: P

=75 ®=0 at r=r, n+l, (7.2a)
5] 5] o
a—/r@:ﬂg@e, ®=®e at T=’ro, 7‘0+1. (7ub)

©®, denotes the temperature perturbation outside the fluid layer and /£ is the ratio
of the thermal conductivity outside to that inside the fluid layer. Following the
corresponding analysis for a plane layer (Busse & Riahi 1980; hereinafter referred
to as BR) we look for solutions of the problem in the limit of small # and introduce

y= g (7.3)
as perturbation parameter. At the same time the limit of a thin shell is assumed such
that 7, tends to infinity with g7:

(ro+3)7 = 7%, (7.4)
where 7 is a parameter of the order unity. Solutions of the problem described by (2.4),
(7.1), (7.2) can be obtained by expanding the coefficients in the series (2.7) in terms
of powers of y: o w
X =ZyXp. BV =TyED =01 (7.5)
Starting with the linear problem given by the terms of order ¢ in (2.4) it is found
that the results are analogous to those of BR. After introducing

Jr) = fo(r)+yfi(r)+ ... } 1.6)
g(r) = go(r) +ygu(r)+ .. ., ‘
and using 2z = r— (r,+3) as new variable, the results
go(x) = ¢, fo(z) = cRP(ZF—})/4!, R{» =720 (7.7)

are found at lowest order, where ¢ is a constant that for simplicity will be set equal
to unity. The exterior temperature distribution ®, enters the problem only in the
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solvability condition for the order v? of the temperature equation. Using the equation
V2@, = 0 outside the fluid layer, the boundary condition (7.2b) can be rewritten as

0 _=Vul+1)g@) (r+}) ,
= 9(2) = P (= =+, (7.8a)
0 _Yulg) (ne+d) .
5o =TS =y, (7.8b)
At second order in the linear problem the results
91(z) = W+ 1) p*B1Q)° — =" +§2* —2°), (7.9a)
F12) =1+ 1) 2 RO[ — (22)10+ 15(22)% + 126(22)°
—810(22)1 +1187(22)>— 517]6!/10121°, (7.96)
21+ 1 17)7
R =172 [ :| .
§ 0 nl(l+1) 162 Ii+1) (7.9¢)

are obtained.
The minimum of the expression (7.9¢) as a function of [ is achieved by

I=1 (=%,
=2 (=9

26%)7
=3 H=2n=

170)-
and 80 on, by increasing values of [ as the inner radius r, of the field shell increases
at fixed value of the conductivity ratio .

The equations of order €® correspond closely to those solved in BR. Because the
condition (2.17) is satisfied R™W vanishes. The following expressions are obtained for
(.. where terms of the order y% have been neglected:

G2y = [Hl+ 1) —k@k+ 1) pPy(3d—12432) /4! (k2= 1), (7.10q)

Go(z) = L1+ 1) n2y(32® — 128 4 5552) /41 (7.10b)

Since the mean temperature difference across the spherical fluid layer is fixed, the
boundary condition (7.2b) assumes the form

O=0 at r=ry,7+1 (7.11)

for the spherically averaged part ® of @. For this reason the z-dependence of G(z)
differs from that of G (z) for k = 1. The functions (7.10) can be used to calculate
expressions (3.9) and (4.8), with the result

Ml k) = 5047?721(1+1)< -@;(2;1—1:;)) 1<k, (7.12a)
M(l.0) = @eoyn*l(i+1), (7.12b)
1

Since M(l, k) is positive for all values of k, R® is positive as expected. The individual
values for the different solutions discussed in §5 can be easily computed with the help
of (6.11) and will not be given here. Instead attention will be focused on the problem
of stability.

When (7.12a) is used, it is found that ¢§® and ¢{® of (6.6) and ¢{®, ¢{® and &{»
of (6.8) are positive, while all other eigenvalues are either negative or vanishing. It
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must thus be concluded that among the three possible solutions for I = 3 only the
solution exhibiting the tetrahedral symmetry is physically possible. This is not
surprising in view of the fact that its heat transport is a maximum at a given positive
value of R— R, because R¥ is smaller than either R%Y or R¥®.

In accordance with the above conclusion it is found that the growing disturbances
of solutions 4 and C tend to transform the respective solutions into the stable solution
B. In case A the growing disturbances are

G #0, =0 (i+3) (7.14a)
Ba®0, Bi=0 (i%3) (7.14b)

which indicates that a solution of tetrahedral symmetry of form (5.5d) or the solution
turned by 90° about the polar axis is approached. Similarly, in case C the growing
disturbances are given by

do*0, &=0 (i>0), (7.15a)
dy#0, d&=0 (@=*1), (7.15b)
Bi+0, B.=0 (i+1), (7.15¢)

which indicates again that the tetrahedral solution in the description (5.5d) is
approached by the disturbance (7.15a) while the disturbances (7.15b, ¢) indicate a
tendency towards the description (5.5¢) and the deseription obtained from (5.5¢)
by a rotation of 90° about the polar axis.

8. Concluding remarks

One of the unresolved questions posed by the preceding analysis concerns the size
of the class of solutions for a given value of [ that cannot be obtained by rotations
from each other. For [ = 1 this class contains only one solution. For even values of
I each solution of the form (2.10) must be counted twice since a change of the sign
of the solution cannot be achieved by a rotation on the sphere. Assuming the general
case RV % 0 for even I it was shown in B75 that the cases I = 2, 4 and 6 yield 2, 4
and 8 separate solutions respectively. But it has not been rigorously proved that there
may not be additional solutions for I = 4 and I = 6. In this paper it is shown that
at least three separate solutions exist for 7 = 3. While the rigorous proof is not
available, the existence of an additional solution appears to be rather unlikely. The
fact that the extremum principle first derived by Busse (1967) for a plane convection
layer is also valid in the spherical case as shown in appendix C implies that there is
at least one stable solution since the function (C 1) must have at least one maximum.
But in general it cannot be excluded that there is more than one stable solution
corresponding to two or more local maxima of the function (C 1). The simultaneous
stability of convection rolls and hexagonal convection in a plane layer for a certain
range of Rayleigh numbers (Busse 1967) represents such an example. For the case
i = 3, however. the arguments given at the end of §6 eliminate this possibility.

While the results of this paper except for those of §7are general in that they require
only the spherical symmetry of the basic state, they are limited by the condition that
€ be small, i.e. only small deviations from the basic state are permitted. But since
the analysis has been mainly concerned with symmetry properties, the results are
hardly affected by the condition of small e. The symmetry of the solutions cannot
be changed by the contributions of higher order in € unless a further bifurcation takes
place, i.e. the convection pattern becomes unstable. Because of the exceptional
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symmetry of the preferred solutions it is expected that those solutions retain their
distinction for an extensive range of Rayleigh numbers. Existing numerical solutions
do not contradict this conclusion. But the evidence from numerical analysis such as
the computation of axisymmetric convection by Schubert & Zebib (1980) is
complicated by the fact that patterns of convection appear to be stable which exhibit
a symmetry that can only be described by a superposition of spherical harmonics of
different degree . Within the realm of the present analysis it is possible to discuss those
cases by assuming that the difference between the values R for  and I 41 is of order
¢2. But this extension of the problem will not be considered here.

The research reported in this paper has been supported by the Earth Sciences
Section of the U.S. National Science Foundation.

Appendix A

By scalar-multiplying the curl of the equation of motion by r the equation for
is obtained : P
<V2-P‘15>L21//= —Plr. Vx[ux(Vxu)]. (A1)

In this appendix it is shown that the right-hand side of (A1) vanishes for
u = Vx (Vx®®Pr), where &V is of the general form (2.9). Using Vxu = r x VV20®
the following relationshp can be derived:
r.Vx@ux(Vxu) =r.Vx{[Vx((Vxrd®)]x (rx VV:OW®)}
=r.Vx{rVV20W V x (V x rd®)—VV2dWD (L,dM)}
= —r.VL,®V x VV20D = (. (A2)
The last equality follows from the fact that the r-dependence of @V separates from

the (¢, ) — dependence, and the latter is given by a spherical harmonic. Thus the
vertical component of vorticity given by L,y is of order €® at most.

Appendix B

Those terms in the solvability conditions of (3.1), (3.7), (4.6) and (4.11) that involve
¢- and @-derivatives can be transformed into terms without those derivatives with
the help of the following relationship:

2Y, Vyw, . Vow}) = (Y (Vywy . Vow +Vow] . Vo))
= 21+ 1) Ywywf) — <V, Yy . Vo(wywif))
= (201 + 1)~ k(k+ 1)] Ypw,w}D, (B 1)

where w; and w} denote two arbitrary spherical harmonics of order /, and ¥ denotes
an arbitrary spherical harmonic of degree k. V,w, denotes the two-dimensional
gradient of w, on the unit sphere.

Appendix C

The solvability conditions for the steady solution, (3.2), (3.8) and for the stability
equations (4.8), (4.12) can be derived from an extremum principle. In analogy to the
corresponding extremum principle for a planar convection layer (Busse 1967) it can
be formulated in the following way.
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Among all solutions of the form (2.9), (2.10), those for which the function
!
KO, ....C) = (R— R(O)) T O +HAM () wpuywp)
m*—l { ok .
+- Z MUE) T Y wwp? (C1)
4 k=0 j=—2k

reaches a stationary value correspond to steady solutions of the nonlinear problem in the
limite = 0. Those solutions (2.10) for which the stationary value is a maximum are stable.
To simplify the notation the following definitions have been used.

o {ea 0 <m<l), oy
" lepn (—l<m<—1>,} ©2)
Ym0, ¢) = Y70, ¢). ('3)
The necessary condition for a stationary value of function (C 1) is
oF . .
0= 2 = (R—RO) ('t My(l) Gy Y%
oCy,
! 2k
+ X MLk T Yo Yhw, Y1) (—1<m <), (C 4)
k=0 j=—2k

which yields the solvability conditions (3.2) and (3.8) at order €* and €® respectively.
It should be noted that the simplifying assumption (2.13) has not been used. The
stationary value defined by (C 4) represents a maximum if all cigenvalues of the
matrix

o*F ,
i 20, = (R= R©)3, 0+ 2M,(1) G, Y YT
k

+ Z M, k ’<Y ety YO KV YT 4+ 0wy Y, YR YD)
o -
(=l<nm<l) (C5)

are negative—definite. A comparison with (4.7)and (4.12)indicates that the expressions
for M,o'V and M,o‘® correspond to the eigenvalues of the matrix (C' 5) at order ¢
and €? respectively.
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